12. Graph Traversal Practice

Graph Traversal Practice

Question:

The basic graph traversals show up a lot, particularly in more complicated graph-based algorithms. It's important to make sure you have a mastery before moving on!

Start out by playing with this DFS and this BFS visualization until the search algorithms feel intuitive to you.

Next, you'll practice writing code to do these searches in Python. We'll have the same base that we started with in the last quiz, with one exception—the Node class now has a visited flag that we can use during the traversals. Write a recursive solution for DFS and an iterative solution for BFS.

Start Quiz:

class Node(object):
    def __init__(self, value):
        self.value = value
        self.edges = []
        self.visited = False

class Edge(object):
    def __init__(self, value, node_from, node_to):
        self.value = value
        self.node_from = node_from
        self.node_to = node_to

# You only need to change code with docs strings that have TODO.
# Specifically: Graph.dfs_helper and Graph.bfs
# New methods have been added to associate node numbers with names
# Specifically: Graph.set_node_names
# and the methods ending in "_names" which will print names instead
# of node numbers

class Graph(object):
    def __init__(self, nodes=None, edges=None):
        self.nodes = nodes or []
        self.edges = edges or []
        self.node_names = []
        self._node_map = {}

    def set_node_names(self, names):
        """The Nth name in names should correspond to node number N.
        Node numbers are 0 based (starting at 0).
        """
        self.node_names = list(names)

    def insert_node(self, new_node_val):
        "Insert a new node with value new_node_val"
        new_node = Node(new_node_val)
        self.nodes.append(new_node)
        self._node_map[new_node_val] = new_node
        return new_node

    def insert_edge(self, new_edge_val, node_from_val, node_to_val):
        "Insert a new edge, creating new nodes if necessary"
        nodes = {node_from_val: None, node_to_val: None}
        for node in self.nodes:
            if node.value in nodes:
                nodes[node.value] = node
                if all(nodes.values()):
                    break
        for node_val in nodes:
            nodes[node_val] = nodes[node_val] or self.insert_node(node_val)
        node_from = nodes[node_from_val]
        node_to = nodes[node_to_val]
        new_edge = Edge(new_edge_val, node_from, node_to)
        node_from.edges.append(new_edge)
        node_to.edges.append(new_edge)
        self.edges.append(new_edge)

    def get_edge_list(self):
        """Return a list of triples that looks like this:
        (Edge Value, From Node, To Node)"""
        return [(e.value, e.node_from.value, e.node_to.value)
                for e in self.edges]

    def get_edge_list_names(self):
        """Return a list of triples that looks like this:
        (Edge Value, From Node Name, To Node Name)"""
        return [(edge.value,
                 self.node_names[edge.node_from.value],
                 self.node_names[edge.node_to.value])
                for edge in self.edges]

    def get_adjacency_list(self):
        """Return a list of lists.
        The indecies of the outer list represent "from" nodes.
        Each section in the list will store a list
        of tuples that looks like this:
        (To Node, Edge Value)"""
        max_index = self.find_max_index()
        adjacency_list = [[] for _ in range(max_index)]
        for edg in self.edges:
            from_value, to_value = edg.node_from.value, edg.node_to.value
            adjacency_list[from_value].append((to_value, edg.value))
        return [a or None for a in adjacency_list] # replace []'s with None

    def get_adjacency_list_names(self):
        """Each section in the list will store a list
        of tuples that looks like this:
        (To Node Name, Edge Value).
        Node names should come from the names set
        with set_node_names."""
        adjacency_list = self.get_adjacency_list()
        def convert_to_names(pair, graph=self):
            node_number, value = pair
            return (graph.node_names[node_number], value)
        def map_conversion(adjacency_list_for_node):
            if adjacency_list_for_node is None:
                return None
            return map(convert_to_names, adjacency_list_for_node)
        return [map_conversion(adjacency_list_for_node)
                for adjacency_list_for_node in adjacency_list]

    def get_adjacency_matrix(self):
        """Return a matrix, or 2D list.
        Row numbers represent from nodes,
        column numbers represent to nodes.
        Store the edge values in each spot,
        and a 0 if no edge exists."""
        max_index = self.find_max_index()
        adjacency_matrix = [[0] * (max_index) for _ in range(max_index)]
        for edg in self.edges:
            from_index, to_index = edg.node_from.value, edg.node_to.value
            adjacency_matrix[from_index][to_index] = edg.value
        return adjacency_matrix

    def find_max_index(self):
        """Return the highest found node number
        Or the length of the node names if set with set_node_names()."""
        if len(self.node_names) > 0:
            return len(self.node_names)
        max_index = -1
        if len(self.nodes):
            for node in self.nodes:
                if node.value > max_index:
                    max_index = node.value
        return max_index

    def find_node(self, node_number):
        "Return the node with value node_number or None"
        return self._node_map.get(node_number)
    
    def _clear_visited(self):
        for node in self.nodes:
            node.visited = False

    def dfs_helper(self, start_node):
        """TODO: Write the helper function for a recursive implementation
        of Depth First Search iterating through a node's edges. The
        output should be a list of numbers corresponding to the
        values of the traversed nodes.
        ARGUMENTS: start_node is the starting Node
        MODIFIES: the value of the visited property of nodes in self.nodes 
        RETURN: a list of the traversed node values (integers).
        """
        ret_list = [start_node.value]
        # Your code here
        return ret_list

    def dfs(self, start_node_num):
        """Outputs a list of numbers corresponding to the traversed nodes
        in a Depth First Search.
        ARGUMENTS: start_node_num is the starting node number (integer)
        MODIFIES: the value of the visited property of nodes in self.nodes
        RETURN: a list of the node values (integers)."""
        self._clear_visited()
        start_node = self.find_node(start_node_num)
        return self.dfs_helper(start_node)

    def dfs_names(self, start_node_num):
        """Return the results of dfs with numbers converted to names."""
        return [self.node_names[num] for num in self.dfs(start_node_num)]

    def bfs(self, start_node_num):
        """TODO: Create an iterative implementation of Breadth First Search
        iterating through a node's edges. The output should be a list of
        numbers corresponding to the traversed nodes.
        ARGUMENTS: start_node_num is the node number (integer)
        MODIFIES: the value of the visited property of nodes in self.nodes
        RETURN: a list of the node values (integers)."""
        node = self.find_node(start_node_num)
        self._clear_visited()
        ret_list = [node.value]
        # Your code here
        return ret_list

    def bfs_names(self, start_node_num):
        """Return the results of bfs with numbers converted to names."""
        return [self.node_names[num] for num in self.bfs(start_node_num)]

graph = Graph()

# You do not need to change anything below this line.
# You only need to implement Graph.dfs_helper and Graph.bfs

graph.set_node_names(('Mountain View',   # 0
                      'San Francisco',   # 1
                      'London',          # 2
                      'Shanghai',        # 3
                      'Berlin',          # 4
                      'Sao Paolo',       # 5
                      'Bangalore'))      # 6 

graph.insert_edge(51, 0, 1)     # MV <-> SF
graph.insert_edge(51, 1, 0)     # SF <-> MV
graph.insert_edge(9950, 0, 3)   # MV <-> Shanghai
graph.insert_edge(9950, 3, 0)   # Shanghai <-> MV
graph.insert_edge(10375, 0, 5)  # MV <-> Sao Paolo
graph.insert_edge(10375, 5, 0)  # Sao Paolo <-> MV
graph.insert_edge(9900, 1, 3)   # SF <-> Shanghai
graph.insert_edge(9900, 3, 1)   # Shanghai <-> SF
graph.insert_edge(9130, 1, 4)   # SF <-> Berlin
graph.insert_edge(9130, 4, 1)   # Berlin <-> SF
graph.insert_edge(9217, 2, 3)   # London <-> Shanghai
graph.insert_edge(9217, 3, 2)   # Shanghai <-> London
graph.insert_edge(932, 2, 4)    # London <-> Berlin
graph.insert_edge(932, 4, 2)    # Berlin <-> London
graph.insert_edge(9471, 2, 5)   # London <-> Sao Paolo
graph.insert_edge(9471, 5, 2)   # Sao Paolo <-> London
# (6) 'Bangalore' is intentionally disconnected (no edges)
# for this problem and should produce None in the
# Adjacency List, etc.

import pprint
pp = pprint.PrettyPrinter(indent=2)

print "Edge List"
pp.pprint(graph.get_edge_list_names())

print "\nAdjacency List"
pp.pprint(graph.get_adjacency_list_names())

print "\nAdjacency Matrix"
pp.pprint(graph.get_adjacency_matrix())

print "\nDepth First Search"
pp.pprint(graph.dfs_names(2))

# Should print:
# Depth First Search
# ['London', 'Shanghai', 'Mountain View', 'San Francisco', 'Berlin', 'Sao Paolo']

print "\nBreadth First Search"
pp.pprint(graph.bfs_names(2))
# test error reporting
# pp.pprint(['Sao Paolo', 'Mountain View', 'San Francisco', 'London', 'Shanghai', 'Berlin'])

# Should print:
# Breadth First Search
# ['London', 'Shanghai', 'Berlin', 'Sao Paolo', 'Mountain View', 'San Francisco']
Solution:

Here is the answer code:

class Graph(object):

    def dfs_helper(self, start_node):
        """The helper function for a recursive implementation
        of Depth First Search iterating through a node's edges. The
        output should be a list of numbers corresponding to the
        values of the traversed nodes.
        ARGUMENTS: start_node is the starting Node
        REQUIRES: self._clear_visited() to be called before
        MODIFIES: the value of the visited property of nodes in self.nodes 
        RETURN: a list of the traversed node values (integers).
        """
        ret_list = [start_node.value]
        start_node.visited = True
        edges_out = [e for e in start_node.edges
                     if e.node_to.value != start_node.value]
        for edge in edges_out:
            if not edge.node_to.visited:
                ret_list.extend(self.dfs_helper(edge.node_to))
        return ret_list

    def bfs(self, start_node_num):
        """An iterative implementation of Breadth First Search
        iterating through a node's edges. The output should be a list of
        numbers corresponding to the traversed nodes.
        ARGUMENTS: start_node_num is the node number (integer)
        MODIFIES: the value of the visited property of nodes in self.nodes
        RETURN: a list of the node values (integers)."""
        node = self.find_node(start_node_num)
        self._clear_visited()
        ret_list = []
        # Your code here
        queue = [node]
        node.visited = True
        def enqueue(n, q=queue):
            n.visited = True
            q.append(n)
        def unvisited_outgoing_edge(n, e):
            return ((e.node_from.value == n.value) and
                    (not e.node_to.visited))
        while queue:
            node = queue.pop(0)
            ret_list.append(node.value)
            for e in node.edges:
                if unvisited_outgoing_edge(node, e):
                    enqueue(e.node_to)
        return ret_list